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Abstract— The deployment of Reinforcement Learning to
robotics applications faces the difficulty of reward engineering.
Therefore, approaches have focused on creating reward func-
tions by Learning from Observations (LfO) which is the task of
learning policies from expert trajectories that only contain state
sequences. We propose new methods for LfO for the important
class of continuous control problems of learning to stabilize,
by introducing intermediate proxy models acting as reward
functions between the expert and the agent policy based on
Lyapunov stability theory. Our LfO training process consists
of two steps. The first step attempts to learn a Lyapunov-like
landscape proxy model from expert state sequences without
access to any kinematics model, and the second step uses the
learned landscape model to guide in training the learner’s
policy. We formulate novel learning objectives for the two
steps that are important for overall training success. We
evaluate our methods in real automobile robot environments
and other simulated stabilization control problems in model-
free settings, like Quadrotor control and maintaining upright
positions of Hopper in MuJoCo. We compare with state-of-
the-art approaches and show the proposed methods can learn
efficiently with less expert observations.

I. INTRODUCTION

Reward engineering remains a challenge in applying Rein-
forcement Learning to robotic control problems [1]. Manual
design of suitable reward functions can be complicated,
requiring extra sensors [2], [3] and may guide learner to
acquire unintended behavior [4]. Consequently, imitation
learning has become an indispensable approach that allows
usage of expert demonstrations to replace reward functions,
typically in the setting of learning from demonstrations
(LfD) [5], [6], where the learner has access to several state-
action pair sequences of desired behavior generated by the
expert. However, actions may be difficult to retrieve (like
with human experts) and there can be mismatch between
expert and learner action spaces. Therefore, methods have
been proposed for the problem of learning from observations
(LfO) where access to expert behavior is limited to state
sequences [7]. LfO can model many challenging forms of im-
itation such as learning from videos to acquire control skills.
State-of-the-art methods for LfO typically adapt methods
from LfD to the state observation setting. For instance, the
Generative Adversarial Imitation from Observation algorithm
(GAIfO) [7], [8] adapts Generative Adversarial Imitation
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Fig. 1: (a) We collect some expert state trajectories. (b) We learn
a Lyapunov-like proxy model from the state trajectories. (c) We
transform the model to a reward function. (d) We subsequently
train the agent to learn a policy using the reward function. In the
bottom left image, we show a trajectory from proposed approach
compared with that of state-of-the-art GAIfO [8].

Learning (GAIL) [9] by using Generative Adversarial Net-
works (GANs) [10] to learn policies that mimic expert state
transition distributions. However, because of the absence
of actions, models, and reward signals, LfO problems are
often too challenging in the general continuous control
settings [8]. Our goal is to develop efficient LfO methods for
a specific but important class of continuous control problems:
stabilization control, such as controlling a robot to maintain
an upright standing pose, or controlling an autonomous car to
track a given path. Stabilization is the basis of all advanced
control problems [11]. Complex tasks can almost always be
decomposed into a motion planning part and a stabilization
control part, which is used for following the plans.

We propose a novel two-step LfO procedure for stabiliza-
tion control to achieve efficient imitation learning, supported
by control-theoretic principles. We exploit the framework of
Lyapunov stability theory, which provides a general structure
for stabilization in nonlinear control systems [11]. The core
idea of Lyapunov methods is to construct an energy-like
landscape that provides sufficient conditions for control sys-
tems to converge to and stabilize at their equilibrium points.
In the LfO setting, we propose methods that learn Lyapunov-
like functions as an intermediate goal, which we name as
Lyapunov-like proxy models. From observations of expert
state sequences (Figure 1 (a)), we first learn a neural network
model that attempts to construct an approximate Lyapunov
landscape to explain convergence of expert states (Figure 1
(b)). We transform this learned landscape model (Figure 1
(c)) to guide the training of the learner policy (Figure 1 (d)).
For this procedure to succeed, it is critical for the proxy
model to capture the geometry of the region of attraction and



convergence rates (i.e. Lie derivatives of Lyapunov function)
so they are consistent with expert behavior dynamics. We test
our proposed procedure in real and simulated environments.

In the context of GAN-based approaches for LfO and
LfD [9], [12]–[15], we can consider the Lyapunov-like proxy
models as introducing a special hypothesis class for the
discriminators, as opposed to using generic distributions, to
achieve more robust modeling of the expert behaviors for the
specific context of stabilization problems.

We describe our technical approach in Section IV. In
Section V, we evaluate our approach in challenging environ-
ments for learning to stabilize from observations, including
Acrobot, Quadrotor control, Automobile path-tracking, and
stabilization version of MuJoCo Hopper robot. We evaluate
our approach on real automobile robot environments in Sec-
tion VI. Compared to state-of-the-art methods, the proposed
methods can learn more efficiently from less observations of
expert trajectories and produce more stable control policies.

II. RELATED WORK

Imitation Learning. Learning from Demonstrations (LfD)
problems have been the most well-studied form of imitation
learning in MDPs. The learner has access to state-action
trajectories of the expert without knowledge of the transition
dynamics or the reward function in the MDP. Existing
approaches in LfD generally fall into three categories: Be-
havioral Cloning [16], [17], Inverse Reinforcement Learn-
ing [18], [19], and Adversarial Imitation Learning [9], [12]–
[15]. Our approaches are most related to the last category,
where imitation learning is formulated in an adversarial
framework of learning the policy as a generative model from
the simultaneous training of a generator model and a discrim-
inator model. The state-of-the-art algorithms are typically
based on the method of Generative Adversarial Imitation
Learning (GAIL) [9], which uses Generative Adversarial
Networks (GANs) [10] to train a generative model that can
create trajectories with a state-action occupancy measure
similar to that of the expert, while the discriminator learns to
provide feedback signals by differentiating the behavior dis-
tributions between the expert and the learner. Discriminator
Actor-Critic (DAC) [20] is an off-policy version of GAIL that
uses state-transition samples to train off-policy to achieve
mode-covering in distribution matching. In general, LfD does
not handle the most challenging forms of imitation, like
learning from visual data of only expert state observations.
Learning from Observations (LfO). GAN-based ap-
proaches from LfD can be extended to the LfO setting
since such methods can be used to only imitate state dis-
tributions without access to actions from the expert. The
Generative Adversarial Imitation from Observation (GAIfO)
algorithm [7], [8] uses a similar GAN framework as GAIL.
Instead of training the discriminator using state-action pairs,
GAIfO uses state transitions so that the imitator policy,
which is the generator, produces a similar distribution of state
transitions as expert. Another approach to LfO is Behavior
Cloning from Observation (BCO) [21] where the agent
acquires inverse dynamics experience in a self-supervised

manner, which is then used to create a model to perform a
task based on expert state observations. This approach does
not require post-demonstration environment interactions, so
it reduces the delay before the imitating agent is successful
and avoids training and learning in risky environments (like
autonomous vehicles). BCO nevertheless faces the issue of
inaccuracies in that the learned inverse dynamics model
accumulates error over time [22]–[24]. GAIfO has been
shown to perform better than BCO by alleviating this com-
pounding error issue [7], [8]. Off-policy learning methods
have also been introduced to the GAN-based approaches
for LfO. The works of Off-Policy Imitation Learning from
Observations (OPOLO) [25] and Inverse Dynamics Disagree-
ment Minimization (IDDM) [26] are able to accelerate the
training of the learner/generator in the GAN framework by
leveraging off-policy training of the inverse dynamics or
action models of the environment before imitating from the
expert. The works of Forward Adversarial Imitation Learning
(FAIL) [27] and Imitating Latent Policies from Observation
(ILPO) [28] also learn forward dynamics models and assume
environment dynamics is deterministic with discrete action
spaces. In contrast to this line of work, we focus on efficient
learning in the setting of on-policy LfO without learning
models or leveraging off-policy samples. The performance
gain from off-policy methods can be used orthogonal to ours.
Lyapunov-based Methods in Reinforcement Learning
and Imitation Learning. Lyapunov-based approaches have
been recently introduced in model-free learning tasks [29]–
[36]. [29], [30] solves constrained MDPs with Lyapunov
methods to constrain a policy search space during each
training iteration. They formulate a constraint value function
as a Lyapunov function and update the policy with Lyapunov
constraints. The work of [31] constructs candidate Lyapunov
functions from value functions in an actor-critic framework,
using Lyapunov decreasing condition as critic value to en-
hance stability properties of neural control policies. The work
of [33] performs self-learning of almost-Lyapunov functions,
used as a critic function to accelerate policy training.

A Lyapunov-based approach for LfD problems by [34]
relies on Lyapunov theory and local quadratic constraints
to establish safety and stability guarantees for deep neural
network control systems. The methods assume that the
environment is a linear dynamical system and do not consider
more complex environments. Other Lyapunov-based methods
in [36]–[38] learn globally asymptotic system dynamics
(transition model) and then plan for trajectories toward the
goal state by leveraging the prediction models, with error
compounding issues similar to BCO [21]–[24].

III. PRELIMINARIES

Markov Decision Processes and Learning from Obser-
vations. We consider imitation learning in Markov Deci-
sion Processes (MDPs) [39], [40]. MDPs are defined as
⟨S,A, P, r, γ⟩, where S is the state space, and A is the
action space. P (st+1|st, at) is the transition probability of
reaching state st+1 after action at is taken at state st,
where t denotes a time-step but does not directly affect



the transition probability. In the standard RL setting, the
agent receives r(s, a, s′) where r : S × A × S → R is
the reward function, and γ is the discount factor. In the
imitation learning setting, the reward function is assumed
unknown, and the goal is to train the agent to perform the
task given expert observation trajectories, so we can write the
MDP for imitation problems as ⟨S,A, P, C⟩ where C is the
cost function that measures the deviation. In the LfO setting,
there is no action information in the expert trajectories, so
the cost function for the learner is defined as C : S×S → R
which only assigns cost after comparing states between the
learner and the expert. The LfO agent attempts to learn
a policy πϕ : S × A → [0, 1] such that sampling from
policy πϕ produces a distribution of state-action-cost tuples
{(si, ai, ci)} under environment dynamics. The goal of LfO
is to minimize cumulative of the cost function C along
trajectories generated by the agent’s policy πϕ.
Stability and Lyapunov Methods. In stabilization problems,
the agents control dynamical systems:

ẋ(t) = f(x(t), u(t)), u(t) = h(x(t)), x(0) = x0, (1)

where x(t) takes values in an n-dimensional state space X ⊆
Rn, f : X → Rn is a Lipschitz-continuous vector field,
h : X → Rm is a control function. Each x(t) ∈ X is called
a state vector and u(t) ∈ Rm is a control vector. The notion
of stability is then formally defined as:

Definition 1 (Lyapunov and Asymptotic Stability). A system
of Eq. 1 is Lyapunov stable at the origin x = 0, if for all ϵ >
0, there exists δ = δ(ϵ) > 0 such that for all ∥x(0)∥ < δ, then
∥x(t)∥ < ϵ for all t ≥ 0. The system is locally asymptotically
stable at the origin if it is Lyapunov stable and there exists
δ > 0 such that if ∥x(0)∥ < δ, then limt→∞ x(t) = 0. ∥ · ∥
is typically the Euclidean norm.

Definition 2 (Lie Derivatives). Consider the system in Eq. 1
and let V : X → R be a continuously differentiable function.
The Lie derivative of V over f is defined as

LfV (x) =

n∑
i=1

∂V

∂xi

dxi
dt

=

n∑
i=1

∂V

∂xi
ẋi(t). (2)

The Lie derivative measures the change of V over time along
the direction of the system dynamics.

Definition 3 (Lyapunov Conditions for Asymptotic Stabil-
ity). Consider a controlled system Eq. 1 with an equilibrium
at the origin, i.e. ∃u ∈ Rm so f(0, u) = 0. Suppose there is
a continuously differentiable function V : X → R satisfying
V (0) = 0; ∀x ∈ X \{0}, V (x) > 0; and LfV (x) < 0. Then
V is a Lyapunov function. The system f is asymptotically
stable at the origin if Lyapunov function V can be found.

We train neural networks to learn approximate Lyapunov
landscapes based on the expert state observations by en-
forcing Lyapunov conditions to be satisfied along expert
trajectories. Because the procedure is learning-based and
cannot guarantee the Lyapunov conditions throughout the
entire state space, we use the name Lyapunov-like proxy
model for our LfO setting.

GAN-based Approaches in Imitation Learning. Adver-
sarial Imitation Learning approaches [9], [12]–[15] rely
largely on the usage of Generative Adversarial Networks
(GANs) [10]. The GAN architecture pits two neural networks
against each other in order to make one neural network
produce data distributions similar to that of the training data.
The two neural networks are called the Generator (G) and
Discriminator (D) respectively. G attempts to fool D by
making its output distribution pg similar to training data
distribution pdata given data from a prior on input noise
variables pz . D is trained to maximize the probability of
assigning the correct label to both training data examples and
samples from G, while G is concurrently trained to minimize
log(1−D(G(z))). The minimax two-player game can thus
be formulated with value function W (D,G) [10]:

min
G

max
D

W (D,G) =

Ex∼pdata
[logD(x)] + Ez∼pz

[log(1−D(G(z)))] (3)

In GAIL [9], pdata is the expert trajectory of state-action
pairs, and G is the imitation policy πϕ that needs to be trained
and from which state-action pairs are sampled. The goal is to
make the learner’s state-action distribution be close to that
of the expert. For LfO problems, GAIfO [8] uses similar
paradigm, replacing state-action pairs with state transitions.

IV. LEARNING STABILIZATION CONTROL

At a high-level, our algorithm comprises two steps. We
first train a neural Lyapunov-like proxy model using the
expert trajectories. This step of training uses violation of
the Lyapunov conditions as the loss function, adapting the
conditions for asymptotic stability from Definition 3 to the
LfO setting. The learned Lyapunov function subsequently
provides the reward signal for training the learner’s agent.
For this second step of training to succeed, we need to define
a transformation of the Lyapunov-like proxy model from
the first step using convex functions. The overall algorithm
called LSO-LLPM, short for Learning Stabilization Control
from Observations through Learning Lyapunov-like proxy
Models, is shown in Algorithm 1. Line 1 − 3 is the first
step of training the Lyapunov-like proxy model (Section IV-
A), and Line 4 − 7 is the second step of using Proximal
Policy Optimization (PPO) [41] to optimize the learner’s
policy given a reward function derived from the Lyapunov-
like proxy model (Section IV-B).

A. Learning Neural Lyapunov-like proxy Models

In the first step, we learn Lyapunov-like proxy models to
capture the stabilization behavior of the expert. The shape of
the region of attraction [11] and the convergence rate of this
approximate Lyapunov landscape are important because we
need to avoid misleading the learner in the second training
step to pursue behaviors that cannot be achieved because of
constraints in the underlying dynamics. For instance, when
controlling a vehicle to track a given path, if we define an
aggressive Lyapunov landscape to aim for a fast convergence
rate, then the vehicle may be forced to attain a high speed



Algorithm 1 LSO-LLPM

Require: Expert state-only trajectories: τE = {(s, s′)}, ran-
domly initialized policy network πϕ, randomly initialized
Lyapunov-like proxy model Vθ, and hyperparameters
c, β1, β2 ∈ R+.

1: for each (s, s′) ∈ τE do
2: Update Vθ by taking gradient descent steps on the

following loss function:

V 2
θ (0)+max(0,−Vθ(s))+β1(c+(Vθ(s

′)−Vθ(s))/∆t)2

3: end for
4: for i = 0, 1, 2, ... do
5: Sample trajectories τi ∼ πϕ
6: Update πϕ by performing PPO update steps with the

following reward function:

g(Vθ(s)) + β2 min(0, (Vθ(s)− Vθ(s
′))/∆t)

7: end for

and fail to stabilize. On the other hand, if the Lyapunov
landscape is too smooth, then the learner may attempt to
take conservative actions that are not sufficient to drive the
system to the target equilibrium.

We represent the Lyapunov-like proxy model over state
space, Vθ : S → R, as a neural network (typically two-
layer fully connected networks are sufficient in our exam-
ples), which is randomly initialized. We sample observations
from the expert trajectories and perform stochastic gradient
descent on the parameters to minimize the violations of
Lyapunov conditions using the following loss function:

Vθ(0)
2 +max(0,−Vθ(s)) + β1(c+ LfVθ(s))

2 (4)

Recall that LfVθ is the Lie derivative of Vθ along the system
dynamics f that we do not have knowledge of. Instead, we
approximate the Lie derivative by the finite difference of the
Lyapunov function over each discrete time step, LfVθ =
(Vθ(s

′)− Vθ(s))/∆t, where s and s′ are consecutive state
observations in the trajectory. We know that this is a good
approximation when ∆t is small.

The first term Vθ(0)
2 ensures that the equilibrium point

corresponds to a Lyapunov value of zero, which is the
lowest across the state space because the second term
max(0,−Vθ(s)) requires that the Lyapunov function value
be non-negative at all sampled points, which ideally gen-
eralizes to other regions in the state space. The third term
β1(c + LfVθ(s))

2 is a critical design. It controls the con-
vergence rate as measured by the Lie derivative LfVθ. Here
we deviate from the standard Lyapunov conditions of only
requiring the Lie derivative to be negative by forcing it to
take the value of some positive constant rate c. With this
requirement, the overall landscape Vθ will be shaped through
learning so each step taken by the expert will be considered
as a unit step toward stabilization. In this way, we capture the
convergence rate by the Lyapunov-like proxy model which
can then properly guide the learner in the second training

step. We stop gradients for Vθ(s′) in calculating LfVθ.

B. Policy Learning from the Lyapunov-like proxy Model

After learning the Lyapunov-like proxy model, we trans-
form it into a reward function that the learner can maxi-
mize using standard policy optimization procedures such as
PPO [41]. The reward is defined as:

g(Vθ(s)) + β2 min(0, (Vθ(s)− Vθ(s
′))/∆t) (5)

where g(x) is a convex function (fixed through all environ-
ments) for scaling the values of the Lyapunov-like proxy
models so that the learner can receive sufficiently strong
reward feedback in each step. We also want to maintain
stability when the agent is already close to the target equi-
librium point. Suitable choices of g(x) include − log(x) and
− log(1− e−kx2

) for some k > 0. The second term of Eq. 5
reduces the reward when the Lie derivative becomes positive,
which prevents the learner from taking large steps near the
equilibrium state. In this manner, we observe fast converge
of the agent to the equilibrium state. Overall, the Lyapunov
candidate function acts as a proxy for the reward function so
that PPO will take steps to increase the reward and attempt
to reproduce stabilization control policies that converge at a
similar rate as the trajectories from the expert.

V. EXPERIMENTS IN SIMULATED ENVIRONMENTS

We evaluate our algorithm LSO-LLPM for nonlinear con-
trol problems and compare with the state-of-the-art algorithm
GAIfO. For fair comparison, we implement GAIfO using
PPO without entropy loss. Evaluation environments include
Automobile path-tracking control [42] and Acrobot [43], as
well as high dimensional tasks like Quadrotor [44], and
Hopper Standing, and Walker Standing. Acrobot is a classical
control task simulated within OpenAI Gym [45], Automobile
path-tracking control and Quadrotor were simulated using
PythonRobotics [46], and Hopper and Walker Standing en-
vironments were simulated with MuJoCo [47]. We used NNs
with 2− 3 hidden layers with 64− 2048 neurons.
Baselines and Evaluation Metrics. We focus on com-
paring with the state-of-the-art on-policy LfO approach
GAIfO [8] because of the same assumptions of having access
to observations only and on-policy training of the learner
without modeling the environment transitions. In particular,
GAIfO has been shown to perform consistently better than
BCO [21]. There are a range of other imitation learning
baselines with different additional assumptions, like LfD
methods with access to actions (GAIL [9], DAC [20]), and
off-policy LfO methods (OPOLO [25]) that assume ability
to pre-train inverse transition models to accelerate learning
progress. This performance gain is orthogonal to on-policy
learning objective in our setting. Consequently, we focus on
comparing with GAIfO in the evaluation and analysis.

We evaluate the performance along the following metrics:
First, we measure the overall performance of the learner with
respect to a varying number of sampled expert trajectories
that are provided to both algorithms. Second, we analyze the
learning efficiency by the learning curves over time.



Fig. 2: Performance of learned policies with varying numbers of
expert trajectories. The performance is normalized to be between 0
(average reward of random policy) and 1 (average reward of expert
policy). The shaded areas show variance over 5 random seeds.
We observe the proposed methods perform much better especially
in environments that are harder to control, like Hopper Standing,
Acrobot, and Quadrotor.

Environments. The nonlinear control tasks in each environ-
ment are specified as follows:
- Acrobot: The Acrobot environment consists of two links
and two joints. In the initial state, both links are hanging
down. The goal is to swing the links up so the tip of the link
farthest from the pivot reaches the threshold in the shortest
time. The state consists of information on the angles from
the joints as well as their angular velocity, and the agent can
actuate the joint between the links.
- Automobile path-tracking control: Autonomous driving is
a control problem in which using speed commands the agent
needs to follow a target path. In the environment, the state
space is four dimensions, namely the difference between
target speed and vehicle speed Vt − v(t), the angular error
θe(t), the distance to the path de(t), and vehicle speed
v(t). The action space has two dimensions, namely the
acceleration a(t) and a steering control δ(t).
- Quadrotor control: We also test our algorithm in the 6-
degree-of-freedom Quadrotor model. This has four control
inputs and twelve state variables. The control inputs Ω1, Ω2,
Ω3, and Ω4 are the angular velocities of each rotor. The state
variables are the inertia frame positions (x, y, z), velocities
(ẋ, ẏ, ż), rotation angles (ϕ, θ, ψ), and angular velocities
(ϕ̇, θ̇, ψ̇). More details regarding the implementation and
dynamics of the Quadrotor can be found in [44], [46]. This
control problem is known to be hard for policy gradient
methods but is solved with learning from demonstrations.
- Hopper and Walker Standing: We use MuJoCo Hopper and
Walker and change task reward to formulate the stabilization
control problem of standing in upright position. In Hopper
Standing, there is one leg with 3 joints. In Walker Standing,
there are two legs with 6 joints. In both environments, the
agent’s goal is to maintain standing state without falling
down (losing balance) for the longest time. We show graph
results for Hopper Standing as the results are similar.

Fig. 3: Comparing learning curves using 10−18 expert trajectories
(fixed number across different methods in each environment) over 5
random seeds. Environments in first row show distribution matching
approaches in GAN-based methods often experience difficulty in
making consistent learning progress while Lyapunov-like proxy
models generate landscapes that are suitable for stabilization tasks
and thus achieve stable learning performance.

A. Overall Performance

Results: LfO Performance. We examine the performance
of the policies trained by LSO-LLPM and GAIfO with
different number of expert trajectories in Figure 2. LSO-
LLPM reaches at least 85% of the expert performance in
all environments for all number of expert trajectories tested.
As shown in the figure, LSO-LLPM consistently performs
better than GAIfO for all environments and number of expert
trajectories. In particular, in Hopper Standing and Acrobot,
LSO-LLPM is able to perform well, even when GAIfO
performs not much better than the random policy baseline.
This difference illustrates the important use of Lyapunov-like
proxy models that capture challenging control problems in
these environments due to underlying nonlinear dynamics. In
these cases, GAN-based approaches performing distribution
matching are often not sufficient for finding good control
policies for stabilization.
Results: Learning Efficiency. The learning curves of LSO-
LLPM and GAIfO in each environment are shown in Fig-
ure 3. In each environment, we use the number of expert
trajectories (ranging between 10 to 18) that corresponds to
the high performance cases in Figure 2. We see that across
all environments, the LSO-LLPM methods can generally
achieve fast learning progress with small variance across
different random seeds. In comparison, GAIfO can learn well
in simple control tasks such as simulated Automobile, but
struggles to make progress in harder environments such as
Hopper Standing and Acrobot. Note that this difficulty is not
only determined by the dimensionality of the action space
but also by how difficult it is to find control policies that
can allow the learner to imitate the expert trajectories, and
the LfO setting further increases that difficulty. For instance,
although Acrobot is low-dimensional, the stabilization con-
trol problem is still very challenging. Overall, we observe
Lyapunov-like proxy models can generate landscapes that



Fig. 4: (a) Car robot used for the hardware experiments. (b) Tracking target path I. The car controlled by LSO-LLPM (black line) tracked
the target path (red dash line) better than GAIfO (blue line). (c), (d) All trajectories driven by LSO-LLPM, GAIfO, Quadratic Lyapunov,
and Lyapunov Risk. Our proposed method tracked both target paths fairly well compared with the other methods. (c) shows the result of
tracking target path I and (d) shows the result of tracking target path II.

are particularly suitable for stabilization tasks for efficient
training of the learner in hard control tasks.

VI. EXPERIMENTS IN HARDWARE ENVIRONMENTS

We present the evaluation of performance of automo-
bile path-tracking control driven by LSO-LLPM, GAIfO,
Quadratic Lyapunov, and Lyapunov Risk.
Quadratic Lyapunov In Lyapunov stability theory, a typical
choice is the quadratic form (sum of squared differences
between state features and their ideal locations/orientations)
as default Lyapunov landscape. This is provably optimal for
linear systems and often works well for mildly nonlinear
systems. We consider whether a quadratic model can guide
the learner without learning a Lyapunov-like proxy model.
Lyapunov Risk We also consider learning the Lyapunov
Function with the generic Lyapunov Risk Loss as proposed
in [48] instead of LSO-LLPM’s loss expression in Eq. 4.
This would demonstrate the importance of enforcing constant
Lie derivative on expert trajectories in guiding the learner.
Hardware settings We tested the control task using the
car robot shown in Fig. 4 (a). One IMU sensor and two
photoelectric encoders are on it to calculate its velocity
v(t) and orientation θ(t) each time step. With these values,
we obtain the difference between target speed and vehicle
speed Vt − v(t), the angular error θe(t), and the distance
to the path de(t), which are used as each policy’s input.
Given these input values, the policies determine acceleration
a(t) and steering control δ(t) at the next time step. In this
hardware experiment, we set ∆t = 0.5 [s], target speed
Vt = 0.3 [m/s]. The policies are trained under a simulator
with these parameter settings, and they are directly deployed
to the robot car for testing.
Results We tested the performance of automobile path-
tracking with two different target paths, Target path I and II.
Fig. 4 (b) and (c) are the results of tracking target path I, and
Fig. 4 (d) shows the result of tracking target path II. The red

dot lines are the target paths given in advance, and the closer
the trajectories are to them, the better their control policies.
As seen from these figures, the car driven by LSO-LLPM
(black lines) tracked the target paths fairly well compared
with the other methods. In particular, GAIfO (blue lines)
showed low path tracking performance as the trajectories
controlled by it gradually deviated from the target paths.
The main strength of our approach is obtaining stable control
policies through LfO training process by utilizing Lyapunov-
like proxy models. This enables more stable tracking per-
formances even for the hardware experiments, in which are
various disturbances such as sensor noises and discrepancies
between simulator and real hardware modeling.

VII. DISCUSSION AND CONCLUSION

We have introduced a novel model-free Lyapunov-based
method to accelerate Learning from Observations for stabi-
lization control problems by introducing intermediate proxy
models between the expert and the agent policy based on
Lyapunov stability theory. Our LfO training process first
learns a Lyapunov landscape model from the expert state
sequences and then transforms the learned model to guide
the training of the learner’s policy. We showed the proposed
methods can capture stabilization control behaviors that take
into account underlying dynamics so the learner’s agent can
successfully recover stable control policies through policy
optimization. We evaluated the proposed methods in various
real and simulated nonlinear stabilization control environ-
ments and observed better learning efficiency compared to
the state-of-the-art GAN-based approaches.

We primarily focused on stabilization to a fixed equilib-
rium. To handle more general control tasks, it is possible to
extend our approach by incorporating time in the Lyapunov-
like proxy models. Such extension may work on more control
environments with general locomotion tasks.
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